
Vector Representations of Words 

In this tutorial we look at the word2vec model by Mikolov et al. This model is used for learning 

vector representations of words, called "word embeddings". 

Highlights 

This tutorial is meant to highlight the interesting, substantive parts of building a word2vec model 

in TensorFlow. 

 We start by giving the motivation for why we would want to represent words as vectors. 

 We look at the intuition behind the model and how it is trained (with a splash of math for 

good measure). 

 We also show a simple implementation of the model in TensorFlow. 

 Finally, we look at ways to make the naive version scale better. 

We walk through the code later during the tutorial, but if you'd prefer to dive straight in, feel free 

to look at the minimalistic implementation in 

tensorflow/examples/tutorials/word2vec/word2vec_basic.py This basic example contains the 

code needed to download some data, train on it a bit and visualize the result. Once you get 

comfortable with reading and running the basic version, you can graduate to 

tensorflow/models/embedding/word2vec.py which is a more serious implementation that 

showcases some more advanced TensorFlow principles about how to efficiently use threads to 

move data into a text model, how to checkpoint during training, etc. 

But first, let's look at why we would want to learn word embeddings in the first place. Feel free 

to skip this section if you're an Embedding Pro and you'd just like to get your hands dirty with 

the details. 

Motivation: Why Learn Word Embeddings? 

Image and audio processing systems work with rich, high-dimensional datasets encoded as 

vectors of the individual raw pixel-intensities for image data, or e.g. power spectral density 

coefficients for audio data. For tasks like object or speech recognition we know that all the 

information required to successfully perform the task is encoded in the data (because humans can 

perform these tasks from the raw data). However, natural language processing systems 

traditionally treat words as discrete atomic symbols, and therefore 'cat' may be represented as 

Id537 and 'dog' as Id143. These encodings are arbitrary, and provide no useful information to 

the system regarding the relationships that may exist between the individual symbols. This 

means that the model can leverage very little of what it has learned about 'cats' when it is 

processing data about 'dogs' (such that they are both animals, four-legged, pets, etc.). 

Representing words as unique, discrete ids furthermore leads to data sparsity, and usually means 

that we may need more data in order to successfully train statistical models. Using vector 

representations can overcome some of these obstacles. 

http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://www.tensorflow.org/code/tensorflow/examples/tutorials/word2vec/word2vec_basic.py
https://www.tensorflow.org/code/tensorflow/models/embedding/word2vec.py


 

Vector space models (VSMs) represent (embed) words in a continuous vector space where 

semantically similar words are mapped to nearby points ('are embedded nearby each other'). 

VSMs have a long, rich history in NLP, but all methods depend in some way or another on the 

Distributional Hypothesis, which states that words that appear in the same contexts share 

semantic meaning. The different approaches that leverage this principle can be divided into two 

categories: count-based methods (e.g. Latent Semantic Analysis), and predictive methods (e.g. 

neural probabilistic language models). 

This distinction is elaborated in much more detail by Baroni et al., but in a nutshell: Count-based 

methods compute the statistics of how often some word co-occurs with its neighbor words in a 

large text corpus, and then map these count-statistics down to a small, dense vector for each 

word. Predictive models directly try to predict a word from its neighbors in terms of learned 

small, dense embedding vectors (considered parameters of the model). 

https://en.wikipedia.org/wiki/Vector_space_model
https://en.wikipedia.org/wiki/Distributional_semantics#Distributional_Hypothesis
https://en.wikipedia.org/wiki/Latent_semantic_analysis
http://www.scholarpedia.org/article/Neural_net_language_models
http://clic.cimec.unitn.it/marco/publications/acl2014/baroni-etal-countpredict-acl2014.pdf


Word2vec is a particularly computationally-efficient predictive model for learning word 

embeddings from raw text. It comes in two flavors, the Continuous Bag-of-Words model 

(CBOW) and the Skip-Gram model (Section 3.1 and 3.2 in Mikolov et al.). Algorithmically, 

these models are similar, except that CBOW predicts target words (e.g. 'mat') from source 

context words ('the cat sits on the'), while the skip-gram does the inverse and predicts source 

context-words from the target words. This inversion might seem like an arbitrary choice, but 

statistically it has the effect that CBOW smoothes over a lot of the distributional information (by 

treating an entire context as one observation). For the most part, this turns out to be a useful thing 

for smaller datasets. However, skip-gram treats each context-target pair as a new observation, 

and this tends to do better when we have larger datasets. We will focus on the skip-gram model 

in the rest of this tutorial. 

Scaling up with Noise-Contrastive Training 

Neural probabilistic language models are traditionally trained using the maximum likelihood 

(ML) principle to maximize the probability of the next word wt (for "target") given the previous 

words h (for "history") in terms of a softmax function, 

P(wt|h)=softmax(score(wt,h))=exp{score(wt,h)}∑Word w' in Vocabexp{score(w′,h)}. 

where score(wt,h) computes the compatibility of word wt with the context h (a dot product is 

commonly used). We train this model by maximizing its log-likelihood on the training set, i.e. by 

maximizing 

JML=logP(wt|h)=score(wt,h)−log(∑Word w' in Vocabexp{score(w′,h)}) 

This yields a properly normalized probabilistic model for language modeling. However this is 

very expensive, because we need to compute and normalize each probability using the score for 

all other V words w′ in the current context h , at every training step. 

http://arxiv.org/pdf/1301.3781.pdf
https://en.wikipedia.org/wiki/Maximum_likelihood
https://en.wikipedia.org/wiki/Softmax_function
https://en.wikipedia.org/wiki/Likelihood_function


 

On the other hand, for feature learning in word2vec we do not need a full probabilistic model. 

The CBOW and skip-gram models are instead trained using a binary classification objective 

(logistic regression) to discriminate the real target words wt from k imaginary (noise) words w~ , 

in the same context. We illustrate this below for a CBOW model. For skip-gram the direction is 

simply inverted. 

https://en.wikipedia.org/wiki/Logistic_regression


 

Mathematically, the objective (for each example) is to maximize 

JNEG=logQθ(D=1|wt,h)+kEw~∼Pnoise[logQθ(D=0|w~,h)] 

where Qθ(D=1|w,h) is the binary logistic regression probability under the model of seeing the 

word w in the context h in the dataset D , calculated in terms of the learned embedding vectors θ 

. In practice we approximate the expectation by drawing k contrastive words from the noise 

distribution (i.e. we compute a Monte Carlo average). 

This objective is maximized when the model assigns high probabilities to the real words, and low 

probabilities to noise words. Technically, this is called Negative Sampling, and there is good 

mathematical motivation for using this loss function: The updates it proposes approximate the 

updates of the softmax function in the limit. But computationally it is especially appealing 

because computing the loss function now scales only with the number of noise words that we 

select (k ), and not all words in the vocabulary (V ). This makes it much faster to train. We will 

actually make use of the very similar noise-contrastive estimation (NCE) loss, for which 

TensorFlow has a handy helper function tf.nn.nce_loss(). 

https://en.wikipedia.org/wiki/Monte_Carlo_integration
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5165-learning-word-embeddings-efficiently-with-noise-contrastive-estimation.pdf


Let's get an intuitive feel for how this would work in practice! 

The Skip-gram Model 

As an example, let's consider the dataset 

the quick brown fox jumped over the lazy dog 

We first form a dataset of words and the contexts in which they appear. We could define 'context' 

in any way that makes sense, and in fact people have looked at syntactic contexts (i.e. the 

syntactic dependents of the current target word, see e.g. Levy et al.), words-to-the-left of the 

target, words-to-the-right of the target, etc. For now, let's stick to the vanilla definition and define 

'context' as the window of words to the left and to the right of a target word. Using a window size 

of 1, we then have the dataset 

([the, brown], quick), ([quick, fox], brown), ([brown, jumped], fox), ... 

of (context, target) pairs. Recall that skip-gram inverts contexts and targets, and tries to 

predict each context word from its target word, so the task becomes to predict 'the' and 'brown' 

from 'quick', 'quick' and 'fox' from 'brown', etc. Therefore our dataset becomes 

(quick, the), (quick, brown), (brown, quick), (brown, fox), ... 

of (input, output) pairs. The objective function is defined over the entire dataset, but we 

typically optimize this with stochastic gradient descent (SGD) using one example at a time (or a 

'minibatch' of batch_size examples, where typically 16 <= batch_size <= 512). So let's look 

at one step of this process. 

Let's imagine at training step t we observe the first training case above, where the goal is to 

predict the from quick. We select num_noise number of noisy (contrastive) examples by 

drawing from some noise distribution, typically the unigram distribution, P(w) . For simplicity 

let's say num_noise=1 and we select sheep as a noisy example. Next we compute the loss for 

this pair of observed and noisy examples, i.e. the objective at time step t becomes 

JNEG(t)=logQθ(D=1|the, quick)+log(Qθ(D=0|sheep, quick)) 

The goal is to make an update to the embedding parameters θ to improve (in this case, maximize) 

this objective function. We do this by deriving the gradient of the loss with respect to the 

embedding parameters θ , i.e. ∂∂θJNEG (luckily TensorFlow provides easy helper functions for 

doing this!). We then perform an update to the embeddings by taking a small step in the direction 

of the gradient. When this process is repeated over the entire training set, this has the effect of 

'moving' the embedding vectors around for each word until the model is successful at 

discriminating real words from noise words. 

We can visualize the learned vectors by projecting them down to 2 dimensions using for instance 

something like the t-SNE dimensionality reduction technique. When we inspect these 

https://levyomer.files.wordpress.com/2014/04/dependency-based-word-embeddings-acl-2014.pdf
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
http://lvdmaaten.github.io/tsne/


visualizations it becomes apparent that the vectors capture some general, and in fact quite useful, 

semantic information about words and their relationships to one another. It was very interesting 

when we first discovered that certain directions in the induced vector space specialize towards 

certain semantic relationships, e.g. male-female, verb tense and even country-capital 

relationships between words, as illustrated in the figure below (see also for example Mikolov et 

al., 2013). 

 

This explains why these vectors are also useful as features for many canonical NLP prediction 

tasks, such as part-of-speech tagging or named entity recognition (see for example the original 

work by Collobert et al., 2011 (pdf), or follow-up work by Turian et al., 2010). 

But for now, let's just use them to draw pretty pictures! 

Building the Graph 

http://www.aclweb.org/anthology/N13-1090
http://www.aclweb.org/anthology/N13-1090
http://arxiv.org/abs/1103.0398
http://arxiv.org/pdf/1103.0398.pdf
http://www.aclweb.org/anthology/P10-1040


This is all about embeddings, so let's define our embedding matrix. This is just a big random 

matrix to start. We'll initialize the values to be uniform in the unit cube. 

embeddings = tf.Variable( 

    tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0)) 

The noise-contrastive estimation loss is defined in terms of a logistic regression model. For this, 

we need to define the weights and biases for each word in the vocabulary (also called the output 

weights as opposed to the input embeddings). So let's define that. 

nce_weights = tf.Variable( 

  tf.truncated_normal([vocabulary_size, embedding_size], 

                      stddev=1.0 / math.sqrt(embedding_size))) 

nce_biases = tf.Variable(tf.zeros([vocabulary_size])) 

Now that we have the parameters in place, we can define our skip-gram model graph. For 

simplicity, let's suppose we've already integerized our text corpus with a vocabulary so that each 

word is represented as an integer (see 

tensorflow/examples/tutorials/word2vec/word2vec_basic.py for the details). The skip-gram 

model takes two inputs. One is a batch full of integers representing the source context words, the 

other is for the target words. Let's create placeholder nodes for these inputs, so that we can feed 

in data later. 

# Placeholders for inputs 

train_inputs = tf.placeholder(tf.int32, shape=[batch_size]) 

train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1]) 

Now what we need to do is look up the vector for each of the source words in the batch. 

TensorFlow has handy helpers that make this easy. 

embed = tf.nn.embedding_lookup(embeddings, train_inputs) 

Ok, now that we have the embeddings for each word, we'd like to try to predict the target word 

using the noise-contrastive training objective. 

# Compute the NCE loss, using a sample of the negative labels each time. 

loss = tf.reduce_mean( 

  tf.nn.nce_loss(nce_weights, nce_biases, embed, train_labels, 

                 num_sampled, vocabulary_size)) 

Now that we have a loss node, we need to add the nodes required to compute gradients and 

update the parameters, etc. For this we will use stochastic gradient descent, and TensorFlow has 

handy helpers to make this easy as well. 

# We use the SGD optimizer. 

optimizer = 

tf.train.GradientDescentOptimizer(learning_rate=1.0).minimize(loss) 

Training the Model 

https://www.tensorflow.org/code/tensorflow/examples/tutorials/word2vec/word2vec_basic.py


Training the model is then as simple as using a feed_dict to push data into the placeholders and 

calling session.run with this new data in a loop. 

for inputs, labels in generate_batch(...): 

  feed_dict = {training_inputs: inputs, training_labels: labels} 

  _, cur_loss = session.run([optimizer, loss], feed_dict=feed_dict) 

See the full example code in tensorflow/examples/tutorials/word2vec/word2vec_basic.py. 

Visualizing the Learned Embeddings 

After training has finished we can visualize the learned embeddings using t-SNE. 

https://www.tensorflow.org/versions/r0.12/api_docs/python/client.html#Session.run
https://www.tensorflow.org/code/tensorflow/examples/tutorials/word2vec/word2vec_basic.py


 



Et voila! As expected, words that are similar end up clustering nearby each other. For a more 

heavyweight implementation of word2vec that showcases more of the advanced features of 

TensorFlow, see the implementation in tensorflow/models/embedding/word2vec.py. 

Evaluating Embeddings: Analogical Reasoning 

Embeddings are useful for a wide variety of prediction tasks in NLP. Short of training a full-

blown part-of-speech model or named-entity model, one simple way to evaluate embeddings is 

to directly use them to predict syntactic and semantic relationships like king is to queen as 

father is to ?. This is called analogical reasoning and the task was introduced by Mikolov 

and colleagues . Download the dataset for this task from download.tensorflow.org. 

To see how we do this evaluation, have a look at the build_eval_graph() and eval() 

functions in tensorflow/models/embedding/word2vec.py. 

The choice of hyperparameters can strongly influence the accuracy on this task. To achieve state-

of-the-art performance on this task requires training over a very large dataset, carefully tuning 

the hyperparameters and making use of tricks like subsampling the data, which is out of the 

scope of this tutorial. 

Optimizing the Implementation 

Our vanilla implementation showcases the flexibility of TensorFlow. For example, changing the 

training objective is as simple as swapping out the call to tf.nn.nce_loss() for an off-the-shelf 

alternative such as tf.nn.sampled_softmax_loss(). If you have a new idea for a loss function, 

you can manually write an expression for the new objective in TensorFlow and let the optimizer 

compute its derivatives. This flexibility is invaluable in the exploratory phase of machine 

learning model development, where we are trying out several different ideas and iterating 

quickly. 

Once you have a model structure you're satisfied with, it may be worth optimizing your 

implementation to run more efficiently (and cover more data in less time). For example, the 

naive code we used in this tutorial would suffer compromised speed because we use Python for 

reading and feeding data items -- each of which require very little work on the TensorFlow back-

end. If you find your model is seriously bottlenecked on input data, you may want to implement 

a custom data reader for your problem, as described in New Data Formats. For the case of Skip-

Gram modeling, we've actually already done this for you as an example in 

tensorflow/models/embedding/word2vec.py. 

If your model is no longer I/O bound but you want still more performance, you can take things 

further by writing your own TensorFlow Ops, as described in Adding a New Op. Again we've 

provided an example of this for the Skip-Gram case 

tensorflow/models/embedding/word2vec_optimized.py. Feel free to benchmark these against 

each other to measure performance improvements at each stage. 

https://www.tensorflow.org/code/tensorflow/models/embedding/word2vec.py
http://msr-waypoint.com/en-us/um/people/gzweig/Pubs/NAACL2013Regularities.pdf
http://msr-waypoint.com/en-us/um/people/gzweig/Pubs/NAACL2013Regularities.pdf
http://download.tensorflow.org/data/questions-words.txt
https://www.tensorflow.org/code/tensorflow/models/embedding/word2vec.py
https://www.tensorflow.org/versions/r0.12/how_tos/new_data_formats/index.html
https://www.tensorflow.org/code/tensorflow/models/embedding/word2vec.py
https://www.tensorflow.org/versions/r0.12/how_tos/adding_an_op/index.html
https://www.tensorflow.org/code/tensorflow/models/embedding/word2vec_optimized.py


Conclusion 

In this tutorial we covered the word2vec model, a computationally efficient model for learning 

word embeddings. We motivated why embeddings are useful, discussed efficient training 

techniques and showed how to implement all of this in TensorFlow. Overall, we hope that this 

has show-cased how TensorFlow affords you the flexibility you need for early experimentation, 
and the control you later need for bespoke optimized implementation. 

 

SyntaxNet 

Introduction 

SyntaxNet is a neural-network Natural Language Processing framework for TensorFlow. 

Basic SyntaxNet Tutorial 

The tutorial shows you how to: 

 Install SyntaxNet. 

 Use the included, pretrained Parsey McParseface parser. 

 Train your own part-of-speech tagger. 

 Train your own parser. 

  

 

 

https://github.com/tensorflow/models/tree/master/syntaxnet#installation

